\qquad

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013
Subject Name: -Mathematical Physics

Course Name :M.Sc(Physics) Sem-I
Duration :- 3:00 Hours

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed.

SECTION - I

Q-1 Do as Directed.(All Questions are compulsory)

a) Give the solution of $\mathrm{L}\left\{t^{2} \sin\right.$ at $\}$.
b) What do you mean by Piece-wise continuous function?
c) Give the equation of Legendre's differential equation.
d) Give Differential Equation of Hermite polynomial.
e) Give the Bessel's differential Equation.

Q-2 Answer the following in detail.

Radium decays to radon which decays to polonium. If at $\mathrm{t}=0$, a sample is pure radium, how much radon does it contann at lime "t"?
b) Prove that Legendre's polynomials are the set of orthogonal function in the interval (-1,1)
c) Prove that: $\boldsymbol{P}_{\boldsymbol{n}}(-1)=(-\mathbf{1})^{\boldsymbol{n}} \boldsymbol{P}_{\boldsymbol{n}}(1)$

Q-2 Answer the following in detail.

a) Explain Rodrigue's formula of Legendre's Polynomials.
b) Recurrence formula for Hermite polynomials.
c) Solve the following ordinary differential equation $x^{2} \frac{d y}{d x}-2 \mathrm{xy}=\frac{1}{x}$.

Q-3 Answer the following in detail.

a) Prove that: $\int_{0}^{\infty} \frac{a}{a^{2}+n^{2}} \cos n x d x=\frac{\pi}{2} e^{-a x}=\int_{0}^{\infty} \frac{n}{a^{2}+n^{2}} \sin n x d x$
b) Explain Recurrence relation for $\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{\mu})$.

OR

Q-3 Answer the following in detail.

a) Explain Generating function of Hermite polynomials.
b) Give the solution of second order linear differential equation with Variable co-efficient

SECTION - II

Q-4 Do as Directed.(All Questions are compulsory)

a) What are the different types of transforms? List atleast four of them
b) Find the Laplace transform of $\mathrm{F}(\mathrm{t})=\mathrm{t}$
c) Define Fourier sine and cosine transforms.
d) Write Mathematical form of Fourier series.

Q-5 Answer the following in detail.

a) Discuss application of Fourier transform in science.
b) Explain Laplace transform of Derivatives.
c) Find Laplace transform of $4 e^{5 t}-4 \cos 3 t+3 \sin 4 t$ apply in the linearity property.

OR

Q-5 Answer the following in detail.
a) Explain integral formula of Laguerre's polynomial
b) Find the Laplace transforms of the following functions.
(i) $\mathrm{F}(\mathrm{t})=e^{k t}$
(ii) $F(t)=$ coskt
c) Solve that: $L^{-1}\left\{\frac{S+1}{S^{2}+6 S+25}\right\}$

Q-6 Answer the following in detail.
a) State and prove some simple properties of Laplace transform.
b) Recurrence formula for Languere's polynomial.

Q-6 Answer the following in detail.

a) Explain inverse Laplace transforms.
b) (i) Find Fourier transformation of given function: $\mathrm{F}(\mathrm{x})=e^{-|x|}$.
(ii) Find the Fourier sine transformation of $\mathrm{F}(\mathrm{t})=e^{-t}$.

