Exam Seat No:_

Enrollment No:_____

C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013 Subject Name: -Mathematical Physics

Course Name :M.Sc(Physics) Sem-I Duration :- 3:00 Hours

Date : 16/12/2013

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.

(2) Use of Programmable calculator & any other electronic instrument is prohibited.

(3) Instructions written on main answer Book are strictly to be obeyed.

(4)Draw neat diagrams & figures (If necessary) at right places.(5) Assume suitable & Perfect data if needed.

SECTION – I			
Q-1	Do as Directed.(All Questions are compulsory)	(07)	
a)	Give the solution of L $\{t^2 \sin at\}$.	(02)	
b)	What do you mean by Piece-wise continuous function?	(02)	
c)	Give the equation of Legendre's differential equation.	(01)	
d)	Give Differential Equation of Hermite polynomial.	(01)	
e)	Give the Bessel's differential Equation.	(01)	
Q-2	Answer the following in detail.		
a)	Radium decays to radon which decays to polonium. If at $t=0$, a sample is pure radium, how much radon does it contain at time "t"?	(05)	
b)	Prove that Legendre's polynomials are the set of orthogonal function in the interval (-1,1)	(05)	
c)	Prove that: $P_n(-1) = (-1)^n P_n(1)$	(04)	
	OR		
Q-2	Answer the following in detail.		
a)	Explain Rodrigue's formula of Legendre's Polynomials.	(05)	
b)	Recurrence formula for Hermite polynomials.	(05)	
c)	Solve the following ordinary differential equation $x^2 \frac{dy}{dx} - 2xy = \frac{1}{x}$.	(04)	
0-3	Answer the following in detail		
a)	Prove that $\int_{-\infty}^{\infty} \frac{a}{-\alpha} \cos x dx - \frac{\pi}{\alpha} e^{-\alpha x} - \int_{-\infty}^{\infty} \frac{a}{-\alpha} \sin x dx$	(07)	
h)	Further Decumence relation for $\mathbf{P}_{(u)}$	(07)	
0)	Explain Recurrence relation for $P_n(\mu)$.	(07)	
0-3	Answer the following in detail		
√ -J a)	Explain Generating function of Hermite polynomials	(07)	
b)	Give the solution of second order linear differential equation with Variable co-efficient	(07)	

SECTION-II

Q-4	Do as Directed.(All Questions are compulsory)	
a)	What are the different types of transforms? List atleast four of them	(02)
b)	Find the Laplace transform of F(t)=t	(02)
c)	Define Fourier sine and cosine transforms.	(02)
d)	Write Mathematical form of Fourier series.	(01)
Q-5	Answer the following in detail.	
a)	Discuss application of Fourier transform in science.	(05)
b)	Explain Laplace transform of Derivatives.	(05)
c)	Find Laplace transform of $4e^{5t}$ - $4\cos 3t$ + $3\sin 4t$ apply in the linearity property.	(04)
	OR	
Q-5	Answer the following in detail.	
a)	Explain integral formula of Laguerre's polynomial	(05)
b)	Find the Laplace transforms of the following functions.	(05)
0)	(i) $F(t)=e^{kt}$ (ii) $F(t)=coskt$	(03)
c)	Solve that: $L^{-1}\left\{\frac{S+1}{S^2+6S+25}\right\}$	(04)
Q-6	Answer the following in detail.	
a)	State and prove some simple properties of Laplace transform.	(07)
b)	Recurrence formula for Languere's polynomial.	(07)
	OR HERRING YOUR DESTRICT	
Q-6	Answer the following in detail.	
a)	Explain inverse Laplace transforms.	(07)
b)	(i) Find Fourier transformation of given function: $F(x) = e^{- x }$.	(07)
,	(ii) Find the Fourier sine transformation of F (t) = $e^{-\iota}$.	

******16******

